
Exploring and Presenting a Game's
Consequence-Space.

(How do you find out what is cool about a 4D game and
 how to you make it so that people understand it)

Miegakure, a 4D game

(x,y,z,w)

Not time!

(Kind of a crazy generalization of “Zelda: A Link To The Past” with more than two worlds
and a special way to move between them.)

Miegakure, a 4D game

Might sound complicated but…

Tons of playtesting at PAX and elsewhere and
people can play it like any other video game!

Designing Abstractions

 Choose a level of abstraction for each part of the game.

 “If” statements, Equations, etc…

 Some abstractions might contain surprising result

 Encode more than what they were based on

 A big part of why we do physics

Mechanics Design

• Select game mechanics so that they create as
many interesting consequences/situations as
possible, while remaining simple.

• These consequences already exist:

1. We are just uncovering them,

2. then presenting them to the player

• Let players experience them to understand them

 1. What are approaches for exploring this space
of consequences and finding interesting ones?

 (How to find cool consequences of living inside a 4D world?)

1. Explore around a point
2. From other sources
3. Combinatorial Approach
4. Top-Down

Flatland, E. Abbott, 1884

Approach 1: Explore around a point

• While exploring different variations

• While programming the game

• While watching someone else play

Approach 2: From other sources

Approach 3: Combinatorial
Approach

• Explore the space exhaustively by laying out a grid

• Looking at pairs of mechanics

• Looking at all possible shapes/positions of blocks

• It helps to look at each mechanic not simply as an
arbitrary gameplay element but as something deeper
and more fundamental.

Approach 3: Combinatorial Approach

S0 (point) S1 (circle) S2 (sphere)

S^0

(point)

Many levels… (2D temple) Temple

S^1

(circle)

Rings Chain

S^2

(sphere)

Sn = sphere of dimension “n”

Approach 3: Combinatorial Approach

• Explore variations on different directions

(by itself) Saws Disapearing

Block

Projectile

Saws

Lasers Fans

Y
(Wall

Jump)

X
(Run+

Jump)

Approach 3: Combinatorial Approach

Super Meat Boy

Approach 4: Top-Down

• Previous approaches mentioned were bottom-
up

• Have an idea for something that would look
cool, but don’t know how to turn it into an
interesting level

• Hardest, but can be very rewarding

Approach 4: Top-Down

• It helps to try to express the “cool thing” in the
system of the game / think of its mathematical
representation (just like in the mapping method)

• Try different representations until you connect
to something interesting

2. How to present the
situations/consequences to the

player?

• Lots of work to find interesting situations…

• We don't want players to miss what is
interesting about a situation!

• This is when the game start needing “puzzles”

• Tried to remove “action game” elements from
Miegakure

Non-verbally!

No overbearing tutorials, even if it means being a
bit lost at first.

Space around the interesting
situations

• The solved state is not necessarily the most
interesting thing about a situation

• Player failures give them as much information as
successes.

2. How to present the situations to
the player?

1. Decompose concepts

2. Sequence concepts

3. Remove arbitraryness

4. Try to prevent brute-forcing

• Unless it becomes too contrived

5. Build upon concepts

6. Suggest certain aspects

Decompose ideas

• For clarity each level should be about only one
consequence only.

• Split a level into two because the players are
having trouble absorbing all the information.

• Ex: Miegakure has 3D-only levels to teach
concepts like pushing, jumping in isolation.

Sequences

• Show relationships between situations

• Teach concepts then use them within more
complex situations.

• Make puzzles first, then arrange them by
difficulty, then find gaps

Puzzle Design Method

• Reduce the number of steps needed to complete the
level

• Remove arbitrary steps

• Once you know what to do it should be simple to execute

• Want a low chance of randomly solving the puzzle

• Try to increase the number of possible states (lots of ways to
get lost)

• Need to understand the space enough to know the right
steps

Make Levels Small & Mentally
Compressible

Caveat: Simple Levels

• Try to make levels hard to brute-force, but…

• It’s ok to let simple levels be easy to brute-force

• If the consequence is simple trying to make the
level hard to brute-force will make it feel
contrived.

Caveat(2):Build upon simple levels!

• Try to build upon simple levels as stepping
stones for more complex ones

• Very important to me! If a game doesn’t do this
it is wasting its potential.

Learning using intuition

• Many players tend to solve problems intuitively unless
they are forced not to

• Trying random or semi-random things (biased on what
seems most likely to work)

• Valid way to learn (example: toy ball)

• Simple, brute-forceable puzzles are a good way to let
players build up an intuitive model of the system

Starting Momentum

• Initial state of a level always might suggest
something to try first

• Can use that to send players into interesting part of
the state space

• Try to avoid sending players into a state that will be
hard or impossible to get out of.

Non-Puzzles

• A lot of the puzzles in Miegakure, even if hard
to brute-force are only puzzles because we
can’t see in 4D.

• The important thing is the underlying system!

miegakure.com

(Will be out when it is done!)

